
Figure 1. Each curve represents the average results
from 16 subjects for a combination of smoothing,
alignment, and temporal detrending choices analyzed
with complex to simple models (left to right/curve). A
curve's position and shape ill ustrates the tradeoffs
between reproducibilit y of activation pattern SNR (r),
match to experimental design (p), and model
complexity.
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INTRODUCTION. We tested the impact of spatial smoothing, within-subject alignment, and temporal detrending in
BOLD-fMRI using prediction and reproducibili ty data-driven performance metrics from cross-validation resampling within
the NPAIRS (Nonparametric, Prediction, Activation, Influence, Reproducibili ty reSampling) framework [1].

METHODS. Data Acquisition: Sixteen right-handed volunteers performed two runs of a static force task [2] alternating
six rest and five force periods/run (44 s/period; 200-1000 g randomized forces with thumb and forefinger). Data collection
used a Siemens 1.5T clinical scanner (fMRI:EPI BOLD, TR/TE=3986/60 msec, FOV=22x22x15 cm, slices=30, voxel=
3.44x3.44x5 mm; MRI: T1-weighted 3D FLASH). Preprocessing: (i) Spatial smoothing/slice with a 2D gaussian kernel
(FWHM = 0, 1.5 or 6 pixels). (ii ) No within-subject registration or AIR3's six-parameter rigid-body transformation
(AIR_6P, [3]); all scans were resampled into a reference MRI space. (iii ) Temporal detrending using a linear combination
of cosine basis functions (0, 0.5 or 2 cycles). Analysis: After a PCA of each run’s scans a canonical variates analysis (CVA:
two-class = force and rest brain states) with one of five levels of model complexity (number of PCs used) produced model
parameters including a discriminant eigenimage. The NPAIRS framework uses spli t-half cross-validation resampling (ie.
equal sized test and training sets), and for each subject each run was treated as both a training- and test-set.
Average-prediction (p) and reproducibili ty (r) metrics per subject were generated by using the CVA parameters for one run
to predict the brain state per scan in the other run, and by correlating the two eigenimages to produce r-values that are
monotonically related to reproducible activation SNRs [1,4].

RESULTS AND DISCUSSION. For the average across all sixteen
subjects, Fig. 1 plots prediction vs reproducibili ty curves as a function of
model complexity for each combination of preprocessing choices. As in
an ROC analysis, there is one optimal graph location: the ideal data set
and analysis should provide perfect prediction and reproducibili ty (p,r) =
(1,1). All curves depict a tradeoff between reproducibili ty, the match to
the experimental design structure (prediction), and model complexity
(degrees of freedom). For the upper six curves, alignment and some
temporal detrending interact with spatial smoothing and are almost always
beneficial, while more complex models tend to converge toward higher
prediction with a large decrease in reproducibili ty. This indicates the
decreased reproducible SNR expected as we obtain more accurate (i.e.,
less biased) prediction estimates with increasing model complexity, i.e.,
a bias-variance tradeoff . Optimal preprocessing choices are obtained with
heavy spatial smoothing, implying that optimization must be performed
as a function of spatial scale (e.g., Gaussian smoothing kernel size).
Using a new data driven alternative to ROC curves we have shown that
preprocessing choices are critical in optimizing fMRI data analysis
approaches.

REFERENCES. (1) Strother SC, et al., Neuroimage, (submitted). (2)
Muley SA, et al., Neuroimage, (in press). (3) Woods RP, et al., J Comput
Assist Tomogr, 22:139-152,1998. (4) Kjems U, et al., Neuroimage,
(submitted).

Acknowledgement:This work was supported in part by NIH grant
MH57180.


